HALAMAN PENGESAHAN

PROTOTYPE SISTEM MONITORING BIAYA PENGGUNAAN AIR BOR PADA PERUMAHAN CITRA BUANA MAS BERBASIS INTERNET OF THINGS

MUNAHIL NIM. 217280062

Telah dipertahankan di depan Komisi Penguji Ujian Skripsi pada tanggal 29 Agustus 2024 dan dinyatakan telah memenuhi syarat

Komisi Penguji

Muh. Basri, S.T., M.T. (Ketua)

Ir. Untung Suwardoyo, S.Kom., M.T., IPP. (Sekretaris)

Mughaffir Yunus, S.T., M.T. (Anggota)

Marlina, S.Kom., M.Kom. (Anggota)

Mengetahui:

Ketua Program Studi Teknik Informatika

Marlina, S.Kom., M.Kom.

NBM. 1162 680

Dekan

7. 5

Muh. Rasr S. M.

PERNYATAAN KEASLIAN SKRIPSI

Saya yang bertandatangan di bawahini :

Nama

: Munahil

NIM

: 217280062

Program Studi

: Teknik Informatika

Fakultas

: Teknik Universitas Muhammadiyah Parepare

Judul Skripsi

: Prototype Sistem Monitoring Biaya Penggunaan

Air Bor Pada Perumahan Citra Buana Mas Berbasis

Internet Of Things.

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini benarbenar merupakan hasil karya saya sendiri, bukan merupakan pengambil alihan tulisan atau pemikiran orang lain. Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan skripsi ini hasil karya orang lain, saya bersedia menerima sanksi sesuai dengan aturan yang berlaku.

> Parepare, 29 Agustus 2024 Yang menyatakan

Munahil

NIM, 217280062

HALAMAN INSPIRASI

وَمَاخَلَقْتُ الْجِنَّ وَالْإِنْسَ الْآلِيعَبُدُ وَنِ

"Dan tidaklah Aku menciptakan Jin dan Manusia melainkan hanya untuk beribadah kepada-Ku."

(Q.S Az-Zariyat : 56)

217280062

PRAKATA

Alhamdulillah, segala puji syukur terlimpah kepada Tuhan kita, Allah Subahanallahu Wa Ta'ala yang atas rahmat-Nya penulis dapat menyelesaikan skripsi penelitian sebagai syarat untuk mulai melakukan penelitian Skripsi pada Universitas Muhammadiyah Parepare (UM Parepare). Tak lupa Shalawat serta salam selalu tercurah untuk nabi kita, Muhammad Shallallahu'alaihi wa sallam semoga kita mendapatkan syafa'atnya kelak.

Adapun judul penelitian yang penulis rencanakan pada skripsi ini yaitu "Prototype Sistem Monitoring Biaya Penggunaan Air Bor Pada Perumahan Citra Buana Mas Berbasis Internet Of Things". Keterbatasan kemampuan, pengetahuan dan pengalaman penulis dalam pembuatan proposal ini masih jauh dari kesempurnaan. Namun meskipun demikian, penulis berharap skripsi ini tidak hanya bermanfaat bagi penulis, tetapi bagi pembaca pada umumnya. Untuk itu penulis mengharapkan kritik dan saran dari pembaca.

Terselesainya skripsi ini, tentunya tidak terlepas dari bantuan dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis mengucapkan banyak terimahkasih dengan penuh ketulusan dan penghargaan setinggi-tingginya kepada:

- Kedua orang tua saya, Ayahanda Abd. Hafid dan ibunda Sappewati beserta keluarga yang telah memberikan dukungan baik moral maupun materil serta do'a yang tiada henti-hentinya kepada penulis.
- Bapak Muhammad Basri, S.T., M.T. selaku Dekan Fakultas Teknik Universitas Muhammadiyah Parepare.
- 3. Ibu Marlina, S.Kom., M.Kom. selaku Ketua Program Studi Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Parepare.
- 4. Bapak Muhammad Basri, S.T., M.T. selaku dosen Pembimbing I yang senantiasa memberi dukungan moril serta memberi solusi dari permnasalahan dalam pembuatan skripsi ini.
- 5. Bapak Ir. Untung Suwardoyo, S.Kom., M.T., IPP. selaku dosen Pembimbing II yang telah memberi saran dan tambahan ilmu serta solusi dari permasalahan dalam pembuatan skripsi ini.
- 6. Bapak Mughaffir Yunus, S.T., M.T selaku Penguji I yang telah memberi masukan dan arahan.
- 7. Ibu Marlina, S.Kom., M.Kom. selaku Penguji II yang telah memberi masukkan dan arahan.
- 8. Para Dosen FT UM Parepare yang telah banyak memberikan pengetahuan pada penulis, selama menimba ilmu di FT UM Parepare ini.
- 9. Para Staf FT UM Parepare yang telah membantu saya dalam hal pengurusan berkas dan penyuratan.

10. Teman-teman Angkatan 2017 Teknik Informatika B FT UM Parepare yang sudah

bersama-sama berjuang.

11. Teruntuk teman – teman di BTN K11 yang telah membantu penulis dalam

keberhasilan skripsi ini.

12. Semua pihak yang membantu dalam pembuatan skripsi ini yang tidak dapat saya

tuliskan.

Akhirnya penulis berharap semoga amal baik dari semua pihak yang telah

membantu penulis dalam menyelesaikan skripsi ini mendapatkan balasan pahala dari

rahmat Allah SWT, semoga apa yang telah ditulis dalam skripsi ini dapat bermanfaat

bagi semua pihak. Aamiin ya Rabbal a'lamin.

Billahifiisabililhaqfastabiqulkhairat.

Parepare, 30 Agustus 2024

Penulis

Munahil NIM.217280062

ABSTRAK

MUNAHIL, *Prototype* Sistem *Monitoring* Biaya Penggunaan Air Bor Pada Perumahan Citra Buana Mas Berbasis *Internet of Things* (dibimbing oleh Muhammad Basri dan Untung Suwardoyo).

Air merupakan salah satu kebutuhan pokok yang utama dalam kehidupan manusia. Kegiatan sehari-hari manusia tidak pernah bisa terlepas dari penggunaan air. Mulai dari kegiatan mandi, mencuci, memasak sampai dengan elemen tubuh manusia salah satunya juga terdiri dari air. Untuk memenuhi kebuthan penggunaan air, masyarakat di berbagai kalangan kota-kota kecil maupun kota-kota besar bergantung pada pasokan air baik dari sumber mata air, sumur bor, maupun perusahaan air pemenrintah yaitu PDAM, yang menditribusikan air bersih untuk masyarakat. Kendala umum yang sering terjadi dalam masyarakat Ketika menggunakan air ialah saat kegiatan mencuci, air keran sering mengalir terbuka atau lupanya menutup keran sehingga air mengalir bebas. Oleh karena itu untuk mengetahui kadar penggunaan airpada sumur bor yang mana kadangkala sering terpakai secara membludak, diperlukan tindakan untuk memonitoring penggunaan air pada sumur bor. Maka dari itu seiring dengan peningkatan teknologi dan bidang pengolahan informasi, teknologi *monitoring* dapat menjadi salah satu solusi masyarakat untuk mengontrol pengunaan air sumur bor. Sehingga masyarakat bisa mengontrol dan menghemat pengunaan air sehari-hari, dan manfaat teknologi tersebuut juga bisa membantu menurunkan biaya tagihan air pada pihak pengelolah air sumur bor dan memperlambat mengeringnya air sumur bor saat musim kemarau berkepanjangan. Hasil dari penelitian ini adalah informasi ketepatan akurasi waterflow yang mempuyai rata-rata pembacaan yang baik, sistem kerja selanjutnya dapat berjalan dengan tingkat error untuk sensor waterflow sebesar 2,928%, setelah 5 kali percobaan.

Kata kunci: *IoT*, *Monitoring*, *ESP32*, *Waterflow*

ABSTRACT

MUNAHIL, Prototype Sistem Monitoring Biaya Penggunaan Air Bor Pada Perumahan Citra Buana Mas Berbasis Internet of Things (supervised by Muhammad Basri dan Untung Suwardoyo).

Water is one of the main basic needs in human life. Human daily activities can never be separated from the use of air. Starting from bathing, washing, cooking to the elements of the human body, one of which also consists of air. To meet their water usage needs, people in various small towns and large cities depend on water supplies from springs, drilled wells, or government water companies, namely PDAM, which distributes clean water to the community. A common problem that often occurs in society when using water is when washing, the tap water often flows open or people forget to close the tap so the water flows freely. Therefore, to determine the level of water use in drilled wells, which are sometimes used in large quantities, measures are needed to monitor water use in drilled wells. Therefore, along with advances in technology and the field of information processing, technological monitoring can be one solution for society to control the use of drilled well water. So that people can control and save on daily air use, and the benefits of this technology can also help reduce the cost of water bills for drilled well managers and slow down the drying of drilled wells during the prolonged dry season. The results of this research are water flow accuracy information which has a good average reading, the working system can then run with an error rate for the water flow sensor of 2.928%, after 5 trials.

Keywords: Internet of Things, Monitoring, ESP32, Waterflow

DAFTAR ISI

		Halaman
SKRI	PSI	i
HAL	AMAN PENGESAHAN	ii
PERN	IYATAAN KEASLIAN SKRIPSI	iii
HAL	AMAN INSPIRASI	iv
PRA	KATA	v
ABST	TRAK	viii
ABST	RACT	ix
DAFT	CAR ISI	x
DAF	AR TABEL	xiv
DAFT	AR GAMBAR	xv
BAB	L.	1
PEND	AHULUAN	1
A.	Latar Belakang	1
B.	Rumusan Masalah	4
C.	Batasan Masalah	4
D.	Tujuan Penelitian	5
E.	Manfaat Penelitian	5
F.	Sistematika Penulisan	6
BAB I	1	7
TINJA	UAN PUSTAKA	7
	Tiniquan Penelitian Terdahulu	7

B.	Sistem	9
C.	IoT (Internet of Things)	11
D.	Monitoring	12
E.	Air	12
F.	Mikrokontroler	13
G.	Water Flow Sensor YF-S201	15
H.	Solenoid Valve	17
I.	Modul Relay	18
J.	LCD (Liquid Crystal Display) 20x4	20
K.	Arduino IDE	21
L.	Visual Studio Code	23
M.	MySQL	23
N.	Flowchart	24
O.	UML (Unified Modelling Language)	25
P.	Kerangka Pikir	32
BAB II	I	33
мето	DE PENELITIAN	33
A.	Jenis Penelitian	33
B.	Waktu dan Tempat Penelitian	33
C.	Alat dan Bahan	33
1.	Alat	34
2.	Bahan	34
-	Pancangan Sistem	35

E.	Metode Pengumpulan Data	36
1.	Observasi	36
2.	Wawancara	36
3.	Studi pustaka	36
F.	Metode Pengujian	36
1.	White Box Testing	36
2.	Black Box	37
вав г	V HASIL DAN PEMBAHASAN	38
A.	Hasil	38
1.	Flowchart Monitoring	38
2.	Flowchart Pembayaran	39
3.	Flowchart Keran Otomatis	39
4.	Desain Tampilan Website	40
5.	Analisis sistem yang berjalan	42
6.	Analisis yang diusulkan	43
7.	Activity Diagram	44
8.	Sequence Diagram	45
В.	Pembahasan	46
1.	Hasil Rancangan Perangkat Keras (Hardware)	46
2.	Hasil Rancangan Perangkat Lunak (Software)	49
3.	Rancangan Prototype	52
4.	Pengujian Waterflow	54
	Denguijan Relay	54

BAB V	KESIMPULAN DAN SARAN	65
A.	Kesimpulan	65
В.	Saran	66
DAFTA	R PUSTAKA	67
LAMPIRAN		70

DAFTAR TABEL

	Halaman
Tabel 2.1 Spesifikasi ESP32	15
Tabel 2.2 Spesifikasi Sensor Waterflow yf-s201	17
Tabel 2.3 Spesifikasi Solenoid Valve	19
Tabel 2.4 Spesifikasi LCD 20x4	22
Tabel 2.5 Simbol Flowchart	25
Tabel 2.6 Simbol Use Case Diagram	29
Tabel 2.7 Simbol Class Diagram	30
Tabel 2.8 Simbol Sequence Diagram	31
Tabel 2.9 Simbol State Chart Diagram	31
Tabel 2.10 Simbol Activity Diagram	32
Tabel 4.1 Use case analisis yang diusulkan	44
Tabel 4. 2 Rangkaian sensor waterflow	48
Tabel 4. 3 Rangkaian modul relay dan solenoid valve	49
Tabel 4.4 Rangkaian LCD	50
Tabel 4.5 Pengujian Waterflow	55
Tabel 4.6 Pengujian relay	. 56
Tabel 4.7 Pengujian halaman login	56
Tabel 4 8 Penguijan halaman pemakajan	57

DAFTAR GAMBAR

	Halaman
Gambar 2.1 Mikrokontroler ESP32	15
Gambar 2.2 Sensor Waterflow yf-s201	17
Gambar 2.3Solenoid Valve	19
Gambar 2.4 Modul Relay 2 Channel	20
Gambar 2. 6 LCD (Liquid Crystal Display)	21
Gambar 2.7 Tampilan Arduino IDE	23
Gambar 3.2 Blok Diagram	36
Gambar 4.1 Flowchart monitoring	39
Gambar 4.2 Flowchart pembayaran	41
Gambar 4.3 Desan tampilan website monitoring	41
Gambar 4.4 Desain tampilan website pembayaran	42
Gambar 4.5 Desain tampilan website pengaturan	43
Gambar 4.6 Analisis sistem yang berjalan	43
Gambar 4.7 Use case analisis yang diusulkan	44
Gambar 4.8 Activity diagram data pemakaian	45
Gambar 4.9 Activity diagram data pembayaran	45
Gambar 4.10 Activity diagram data pelanggaran	46
Gambar 4.11 Sequence diagram	46
Gambar 4.12 Rangkaian sensor Waterflow	47
Gambar 4.13 Rangkaian modul relay dan solenoid valve	48
Gambar 4.14 Rangkaian LCD	49

Gambar 4.15 Rangkaian keseluruhan	50
Gambar 4.16 Tampilan login	51
Gambar 4.17 Tampilan data pemakaian	51
Gambar 4.18 Tampilan data pembayaran	52
Gambar 4.19 Tampilan data pelanggan	52
Gambar 4.20 Tampilan data pengguna	53
Gambar 4.21 Rancangan prototype	53
Gambar 4.22 Rangkaian alat	54
Gambar 4.23 Flowchart monitoring	58
Gambar 4.24 Flowgraph monitoring	59
Gambar 4.25 Flowchart pembayaran	63
Gambar 4.26 Flowgraph pembayaran	64