EVALUASI HASIL PRODUKSI UDANG VANAME DENGAN METODE REGRESI LINEAR BERGANDA

MUH. SYAWAL, NIM. 218280175 (2024) EVALUASI HASIL PRODUKSI UDANG VANAME DENGAN METODE REGRESI LINEAR BERGANDA. Other thesis, Universitas Muhammadiyah Parepare.

[thumbnail of 218280175 MUH. SYAWAL SAMPUL.pdf]
Preview
Image
218280175 MUH. SYAWAL SAMPUL.pdf - Cover Image

Download (40kB) | Preview
[thumbnail of 218280175 MUH. SYAWAL PENDAHULUAN.pdf]
Preview
Text
218280175 MUH. SYAWAL PENDAHULUAN.pdf - Submitted Version

Download (802kB) | Preview
[thumbnail of 218280175 MUH. SYAWAL ISI.pdf]
Preview
Text
218280175 MUH. SYAWAL ISI.pdf - Submitted Version

Download (2MB) | Preview
[thumbnail of 218280175 MUH. SYAWAL LAMPIRAN.pdf]
Preview
Text
218280175 MUH. SYAWAL LAMPIRAN.pdf - Submitted Version

Download (889kB) | Preview
[thumbnail of Jurnal Muh. Syawal 218280175.pdf]
Preview
Text
Jurnal Muh. Syawal 218280175.pdf - Submitted Version

Download (618kB) | Preview

Abstract

The farming community rarely evaluates the external factors that affect the production rate of vaname shrimp. Conventional methods still form the basis of the evaluation system. This
study aims to create a web-based application to make it easier to evaluate production results online and systematically on a smartphone and determine the effect of fertilizer, seeds, and
harvest time on production results using multiple linear regression analysis. Quantitative research method using multiple linear regression equation analysis. Research location Pinrang Regency, South Sulawesi, Indonesia. Creating applications using Javascript, Python programming languages, Visual Studio Code tools, and MySQL databases The results of making the application show that people can easily evaluate shrimp production online, systematically, and store production records. The results of the regression analysis with the coefficient of determination (r^2) are 0.942. This shows that all independent variables together or simultaneously have an
influence of 94.2% on production, while the remaining 5.8% is influenced by other variables.

Item Type: Thesis (Other)
Uncontrolled Keywords: Vaname shrimp; Production; Multiple linear regression; Python; Javascript
Subjects: T Technology > T Technology (General)
Divisions: Fakultas Teknik > Teknik Informatika
Depositing User: Sitti Hawa
Date Deposited: 29 Aug 2024 02:38
Last Modified: 29 Aug 2024 02:38
URI: https://repository.umpar.ac.id/id/eprint/813

Actions (login required)

View Item
View Item